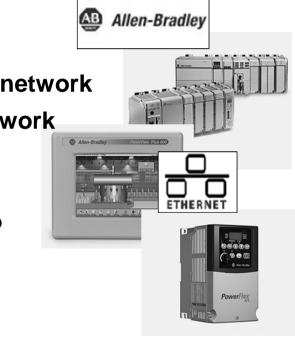
CoNeT Mobile Lab: Ethernet IP on Allen Bradley platform

Introduction

- **1 Distributed control architecture**
- 2 Real-time control system and real-time network
- **3 Monitoring and testing the Ethernet network**
- 4 Introduction to EtherNet/IP technology
- **5 Introduction to laboratory:**

Description of laboratory and basic scenario

6 Software tools


Co-operative Network Training

Education and Culture DO

© 2011 Maciej Rosół, Department of Automatics and Biomedical Engineerimg, AGH University of Science and Technology

0

>What is EtherNet/IP?

- EtherNet/IP is an industrial application layer protocol (CIP) operating over the Ethernet medium and used for communication between industrial control systems and their components,
- By Ethernet, we mean a TCP/UDP/IP based network
- Typically 100 MBps Twisted Pair, star topology and switch
- Could be
 - 10 MBps Coaxial
 - 1 GBps Fiber
 - 11 MBps Wireless
- By CIP we mean the *Common Industrial Protocol.* CIP[™] is an *application protocol*. It defines rules for organizing and interpreting data and is essentially a messaging structure that is independent of the underlying physical layer. It is freely available and accessible to anyone, and widely supported by many manufacturers.

Specification downloadable at www.odva.org

EtherNet/IP can be easily confused as a combination of Ethernet (the physical layer, link, or medium used in most office and many industrial networking environments) and the Internet Protocol (IP)

© 2011 Wojciech Modzelewski, Wojciech Grega, Department of Automatics, AGH-UST

<4 Introduction to EtherNet/IP Technology> <4.1 Introduction>

Why is worth to use EtherNet/IP?

- Open industrial networking standard,
- Designed for use in process control, hard real-time systems, industrial automation applications,
- Wide-spread standard (low cost per node),
- Classified as Class 1 Real Time Ethernet (can be extended to class 2),
- Emerged from Common Industrial Protocol,
- TCP/UDP/IP encapsulation,
- Ensures the desired level of service quality (QoS).

EtherNet/IP in OSI Reference Model

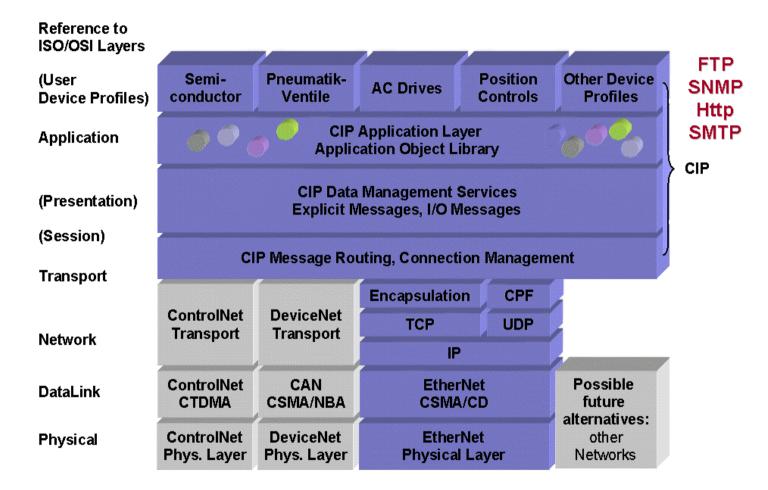


Fig. 4.1. (EtherNet/IP), Comparison of DeviceNet and ControlNet OSI [1]

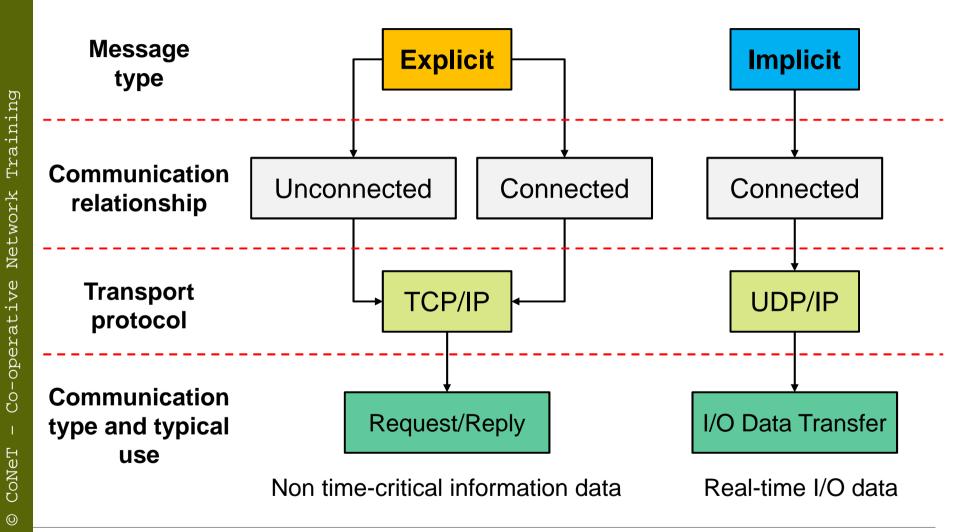
© 2011 Wojciech Modzelewski, Wojciech Grega, Department of Automatics, AGH-UST

<4 Introduction to EtherNet/IP Technology> <4.1 Introduction>

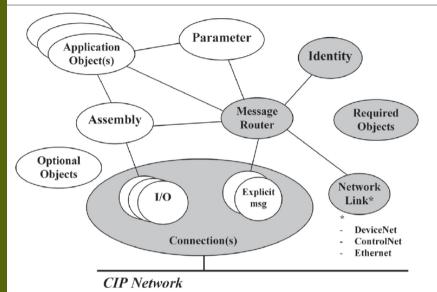
>Ethernet/IP – type of messages

Explicit:

- Uses TCP/IP connections (port number 0xAF12),
- Client-server type transactions,
- Message connections are point-to-point communication paths between two devices,
- Forms of messaging:
 - Unconnected messaging (should be used only when the application requires very irregular and infrequent request intervals),
 - Connected messaging requires setting up a connection first, useful in applications that require periodic requests).


Implicit (I/O messaging):

- Uses UDP/IP connections (port number 0x08AE),
- Producer-Consumer type transactions,
- Data field contains only real-time data,
- UDP packets are transmitted using multicast communication (a specific device allocated IP multicast address).



Ethernet/IP – Type of messages - Summary

CIP device representation

Fig. 4.2. . A typical CIP device representation

The objects required in a typical device:

- Connection Object,
- Identity Object,
- Network-specific link objects (depends on network),
- Message Router Object.

Access to the device requires object number, instance number and attribute number

The CIP Family of Protocols contains a large collection of commonly defined objects. The overall set of object classes can be subdivided into three types:

- General-use,
- Application-specific,
- Network-specific.

Identity object

Mandatory Attributes:

Vendor ID

Revision

Status

State

Device Type

Product Code

Serial Number

Product Name

Optional Attributes:

Configuration

Consistency Value

Heartbeat Interval

Languages Supported

•

۲

•

۲

•

۲

•

۲

Application-specific object:

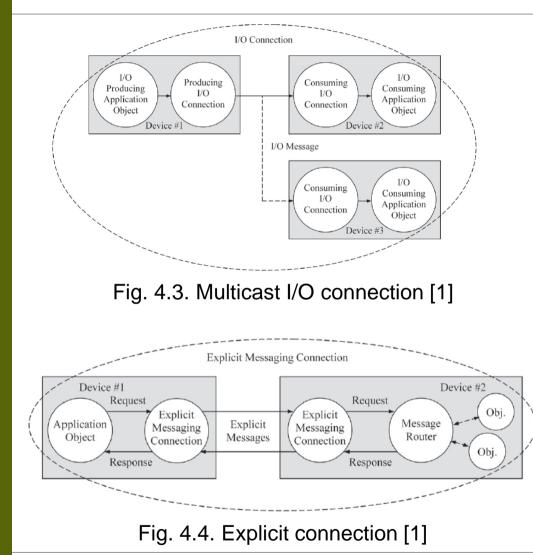
- | AC/DC Drive
 - Analog Group
 - Analog Input Group
 - Analog Output Group
 - Analog Input Point
 - Analog Output Point
 - Block Sequencer
 - Command Block
 - Control Supervisor
 - Discrete Group
 - Discrete Input Group
 - Discrete Output Group
 - Discrete Input Point
 - Discrete Output Point
 - Group
 - Motor Data

- Overload
- Position Controller
- Position Controller Supervisor
- Position Sensor
- Presence Sensing
- S-Analog Actor
- S-Analog Sensor
- S-Device Supervisor
- S-Gas Calibration
- S-Partial Pressure
- S-Single Stage Controller
- Safety Supervisor
- Safety Validator
- Softstart Starter
- Trip Point

CIP – Device profiles

Devices of similar functionality have been grouped into Device Types with associated profiles

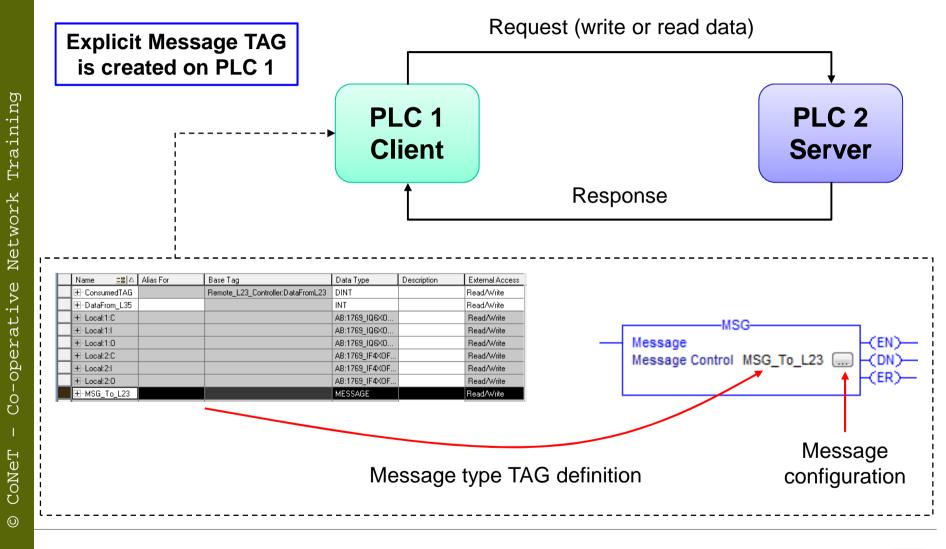
CIP profile contains the full description of the object structure and behavior:


- Communication networks,
- Objects

Device profiles:

- AC Drives Device (0x02)
- Communications Adapter (0x0C)
- Contactor (0x15)
- ControlNet Physical Layer Component (0x32)
- ControlNet Programmable Logic Controller (0x0E)
- DC Drives (0x13)
- DC Power Generator (0x1F)
- Encoder (0x22)
- Fluid Flow Controller (0x24)
- General Purpose Discrete I/O (0x07)
- Generic Device (0x00)
- Human Machine Interface (0x18)
- Inductive Proximity Switch (0x05)
- Limit Switch (0x04)
- Mass Flow Controller (0x1A)
- Motor Overload Device (0x03)
- Motor Starter (0x16)
- Photoelectric Sensor (0x06)
- Pneumatic Valve (0x1B)
- Position Controller (0x10)
- Process Control Valve (0x1D)
- Residual Gas Analyzer (0x1E)
- Resolver (0x09)
- RF Power Generator (0x20)
- Safety Discrete I/O (0x23)
- Softstart Starter (0x17)
- Turbomolecular Vacuum Pump (0x21)
- Vacuum/Pressure Gauge (0x1C)

CIP connections



All connections on EtherNet/IP are established using a UCMM (Unconnected Message Manager) Forward_Open message

When a connection is established, the transmissions associated with that connections are assigned a Connection ID (CID). If the connection involves a bidirectional exchange, then two Connection ID values are assigned

>Explicit message – exemplary configuration

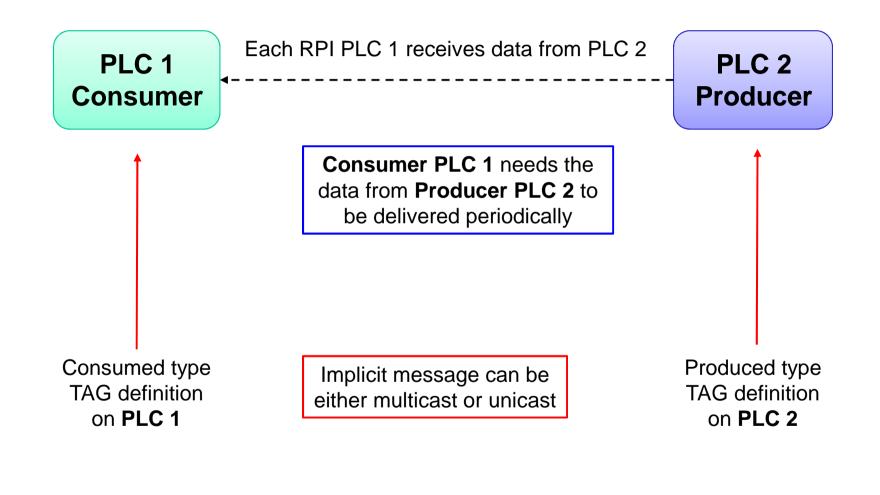
<u>-Ne</u>j

>Explicit message – connection configuration

Explicit Message over Ethernet/IP must be:

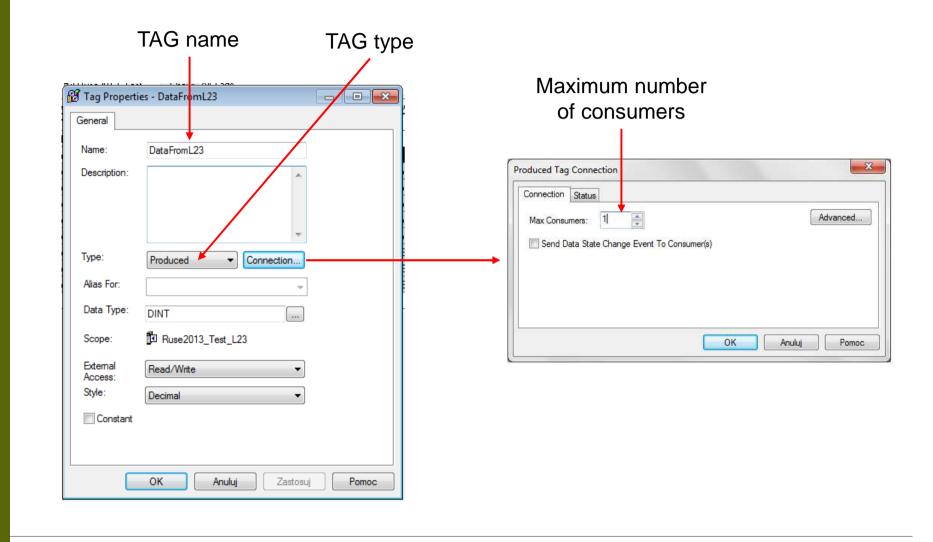
- CIP Data Table Read PLC 1 reads data from PLC 2.
- CIP Data Table Write PLC 1 writes data to PLC 2.

Configuration* Communication Tag		Configuration* Communication Feg	
Message Type: CIP Data Table Read	•	Message Type: CIP Data Table Write	•
Source Element: TAG_On_Remote_PLC 🔍		Source Element: Local_TAG	Ne <u>w</u> Tag
Number Of <u>E</u> lements: 1		Number Of <u>E</u> lements: 1	
Destination Element: Local_TAG	▼ Ne <u>w</u> Tag	Destination Element: TAG_On_Remote_PLC	\sim
			Source (local
Destination (local)	Source (remote)	Destination (remote)	
TAG on PLC 1	TAG on PLC 2	TAG on PLC 2	
) Enable 🔾 Enable Waiting 🔾 Start 🔾	Done Done Length: 0	◯ Enable ◯ Enable Waiting ◯ Start ◯ Don	e Done Length: 0
) Error Code: Extended Error Code:	🔲 Timed Out 🗲	Error Code: Extended Error Code:	🔲 Timed Out 🗲


Read message

Write message

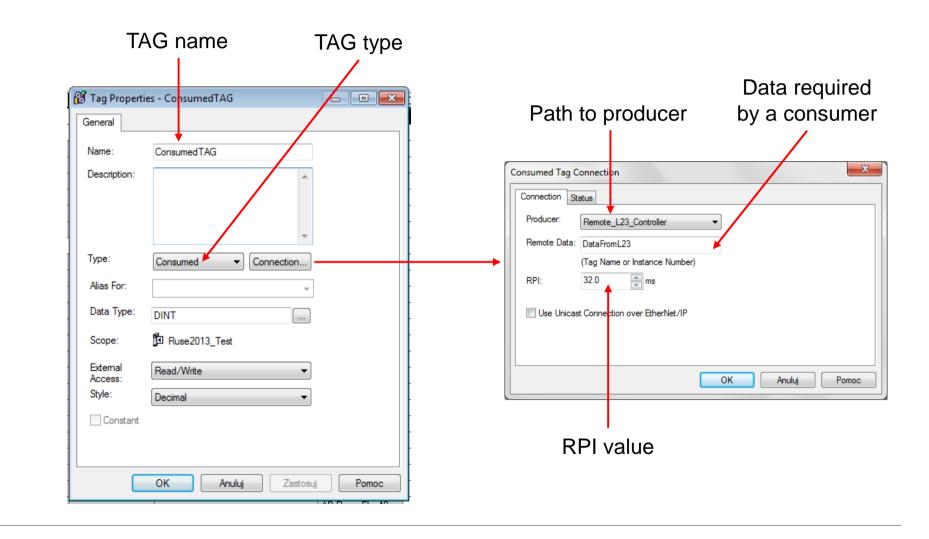
<u>⊶∿</u>⊇ा


>Implicit message – exemplary configuration

Training Co-operative Network CONeT \odot

<u>-Ne</u>

Producer TAG properties



Training Co-operative Network CoNeT

 \odot

⊶∿⊇ਾ

Consumer TAG properties

Training Network Co-operative CONeT

 \odot

<mark>⊌∕∖</mark>_⊺

CoNeT Mobile Lab: Ethernet IP on Allen Bradley platform

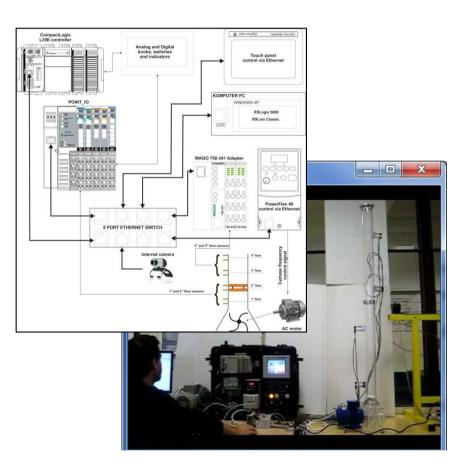
Introduction

- **1 Distributed control architecture**
- 2 Real-time control system and real-time network
- **3 Monitoring and testing the Ethernet network**
- 4 Introduction to EtherNet/IP technology
- **5 Introduction to laboratory:**
 - **Description of laboratory and basic scenario**
- 6 Software tools

Co-operative Network Training

Education and Culture De

© 2011 Maciej Rosół, Department of Automatics, AGH University of Science and Technology


<5 Introduction to laboratory: Description of laboratory and basic scenario >

5.1 System architecture

5.2 Aerolift overview

5.3 Network structure

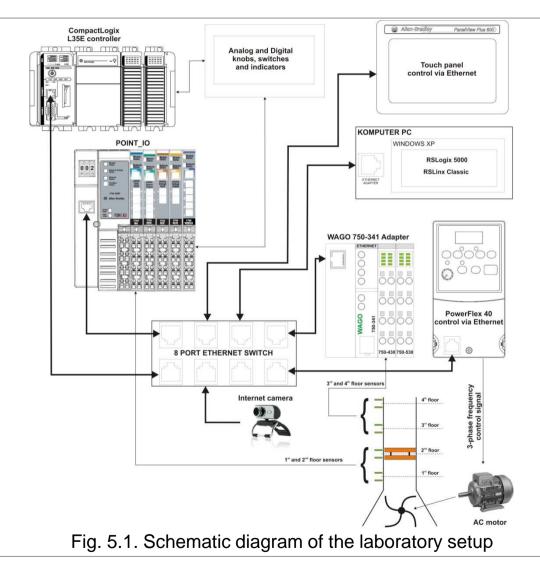
5.3 References

© 2011 Adam Piłat, Maciej Rosół, Department of Automatics, AGH-UST

Content of the lesson " Ethernet IP on Allen Bradley platform "

System Architecture

Training


Network

operative

Ċ

CONET

 \odot

Six nodes:

- 1. CompactLogix L35E PLC
- 2. POINT_IO: 1734-AENT
- 3. PowerFlex 40 inverter
- 4. WAGO 750-341 Coupler
- 5. Internet Camera (WebCam)
- 6. PanelView 600 Plus Touch Panel (now unused)

Features:

- All nodes communicate via EtherNet/IP protocol
- All nodes are placed in a specially designed Allen-Bradley demo case
- PC is used as a development and Ethernet monitoring platform
- WebCam generates a noises in the network packet traffic

Compact Logix Controller 1769-L35E

PLC CLC 1769-L35E is equiped with:

- CPU (Central Processing Unit)– firmware revision 19.0, 1.5 MB internal memory,
- One RS232 serial port and one 100Mb/s EtherNet/IP port,
- Compact Flash card socket,
- Power supply Allen-Bradley 1769-PA2: input:120/240VAC, output: 24VDC,
- Max. 30 local IO modules,
- EtherNet/IP Connections: 32 TCP/IP 32 CIP.

Local I/O Modules:

- the Digital I/O module Allen-Bradley 1769-IQ6XOW4 (firmware revision 2.1 series B),
- the analog I/O module Allen-Bradley 1769-IF4XOF2 (firmware revision 1.1 series A),
- the terminal of the CompactBUS Allen-Bradley 1769-ERC.

Compact Logix Controller 1769-L35E - local I/O Modules

Table 5.1. The main parameters of the CompactLogix L35E local I/O modules

1756-ENBT	1769-IQ6XOW4	1769-IF4XOF2
 Interface for a ControlLogix controller to communicate with other devices over an EtherNet/IP network, Adapter for 1756 I/O modules, Web server to provide diagnostic and status information, Communication via produced/consumed tags and MSG instructions. 	 (sinking/sourcing), operating voltage range 10 to 30 V, 4 digital outputs 24V relay (AC/DC), operating voltage range 5 to 265V 	single-ended), analog normal operating ranges: voltage 0-10V, current 0-20 mA, resolution: 8-bits plus sign, response time: 5 ms/channel,

Compact Logix Controller 1769-L23E

The 1769-L23E CompactLogix system is a packaged controller for smaller, machine-level control applications.

PLC CLC 1769-L23E is equiped with:

- CPU (Central Processing Unit)– firmware revision 19.0, 512 kB internal user memory,
- Max. 128 I/O points,

Training

Network

operative

-С0-

CoNeT

 \odot

- One RS232 serial port and one 100Mb/s EtherNet/IP port,
- EtherNet/IP Connections: 8 TCP/IP 32 CIP,
- 16 DC inputs: 24VDC,
- 16 DC outputs: 24VDC,
- Max. 3 local IO expansions.

POINT_IO Modules

Training

Network

Co-operative

CONET

 \odot

Table 5.2. Parameters of the distributed POINT_IO modules				
1734-AENT	 Serves as a bridge between POINT I/O modules and the Ethernet/IP network, 			
	• Provides communication for <i>CompactLogix</i> , <i>ControlLogix</i> controllers (supports of connections from multiple controllers simultaneously),			
	Communication via produced/consumed tags,			
	EtherNet/IP messages encapsulated within standard TCP/UDP/IP protocol,			
	• Half/full duplex 10 Mbit or 100 Mbit operation (RJ-45, interfacing via category 5 rated twisted pair cable).			
1734-IB8	8 digital inputs module: 24 V DC, sink,			
	Operating voltage range: 1028.8 V DC.			
	• Allows input filter time in the range of 063 ms.			
1734-OB4E	• 4 digital outputs module: 24 V DC, source,			
	Output current rating max. 1 A/channel,			
	 Outputs are not isolated, 			
	Operating voltage range: 1028.8 V DC.			

© 2011 Adam Piłat, Maciej Rosół, Department of Automatics, AGH-UST

<5 Introduction to laboratory: Description of laboratory and basic scenario> <5.1 System architecture>

POINT_IO Modules

Training

Network

Co-operative

CONET

 \odot

Table 5.2. Parameters of the distributed POINT_IO modules						
1734-IE2V	• 2 analog inputs module. Operating ranges voltage: -10 +10 V.					
	 Input resolution: 15-bits plus sign (–32,768+32,767), 					
	The module produces 6 bytes of input data and fault status data: 2-bytes data/channel, 1-byte status/channel,					
	 Operates in unipolar or bipolar mode. 					
1734-OE2V	 2 analog outputs module. Output voltage signal range: 0 +10 V or -10 +10 V, 					
	• Output resolution: 13-bits plus sign (-32,768+32,767),					
	• The module consumes 4 bytes of output data: 2-bytes/channel,					
	 The module produces 2 bytes of fault status data: 1- byte/channel, 					
	 Operates in unipolar or bipolar mode, 20µs conversion rate. 					
1734-VHSC24	Very High Speed Counter module: 24V,					
	 Accepts feedback from an encoder (either single ended or differential), pulse generators, or mechanical limit switches at frequencies up to 1 MHz, 					
	• Allows filtering with four settings (50Hz, 500Hz, 5kHz or 50kHz).					
	© 2044 Adam Bilat Masiai Basék Dapartment					

>Allen-Bradley PowerFlex 40 AC

Main features of the PowerFlex40 AC drive:

- Integral keypad for simple operation and programming,
- 4 digit display with 10 LED indicators for display of drive status,
- Communication with PC using the RS-485 interface, Ethernet/IP (also DeviceNet, PROFIBUS DP, LonWorks and ControlNet interface are available),
- Autotune allows to adapt to individual motor characteristics,
- Sensorless Vector Control provides exceptional speed regulation and very high levels of torque across the entire speed range of the drive,
- Built-in PID cotroller,
- Timer, Counter, Basic Logic and StepLogic functions,
- Built-in digital and analog I/O (2 analog inputs, 7 digital inputs (4 fully programmable), 1 analog output, 3 digital output),
- Easy set-up over the network (RS NetWorx property).

PanelView Plus 600 & EtherNet/IP Configuration

- Works as an operator interface,
- Works under Windows CE operating system,
- Communication via Ethernet interface,
- Has possibilities in data presenting, trends and data collection,
- Visualization can be implemented using RSView Studio environment.

The information required to configure the network:

- Parameters of the Ethernet network: IP address, Subnet mask, Gateway address.
- Types and parameters of the installed modules.
- Requested Packet Interval (RPI) time.

The **RPI** is a common parameter configuration for all the modules connected to a network. It specifies the period at which data is updated over a connection.

>EtherNet/IP Configuration

Training

Co-operative Network

CONET

 \odot

Configuration is performed using RSLinx and RSLogix 5000 software.

Table 5.4. Ethernet/IP parameters of the laboratory setup modules

		CompactLogix	1734-AENT	PanelView Plus 600	PowerFlex40	CompactLogix	
Gener Type Vend Parer Na <u>m</u> Desc	: 1734-AENT /A 1734 Ethem or: Allen-Bradley t: LocalENB e: Distributed_IO rigtion: n Format: Rack Optimization Chassis Size:	Configuration Port Diagnostics Chassis et Adapter, Twisted-Pair Media Address / Host Name IP Address: 19 Host Name:	2.168.1.2	Plus 600 Module Properties: LocalENB:0 General Connection Module Info Requested Packet Interval (RPI): [Inhibit Module Major Fault On Controller If Con Module Fault	(1734-AENT/A 2.3) Port Configuration Port Diagnostic 100.0 + ms (2.0 - 750.0 ms)	L23E	×
Status:		OK Cancel	Apply Help	Status: Offline	OK Ca	ancel Apply Help	

- 4 floor building model.
- Sensors meassure the cart position and detect the cart motion.
- High level control automata that have 8 inputs and one output.

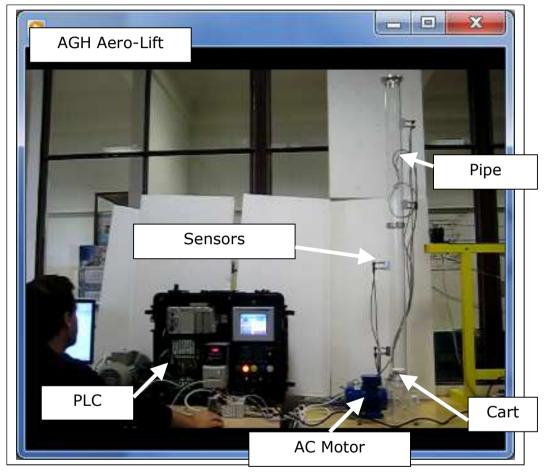
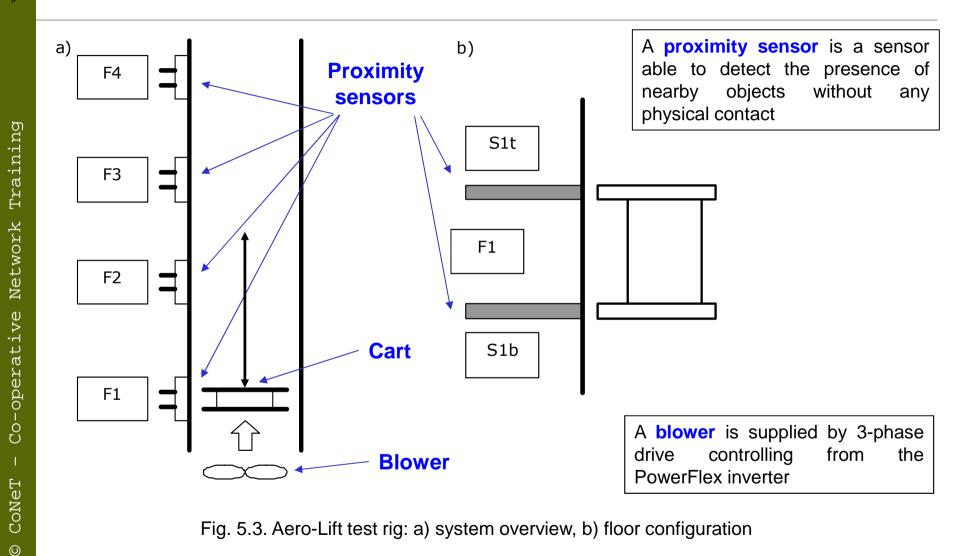
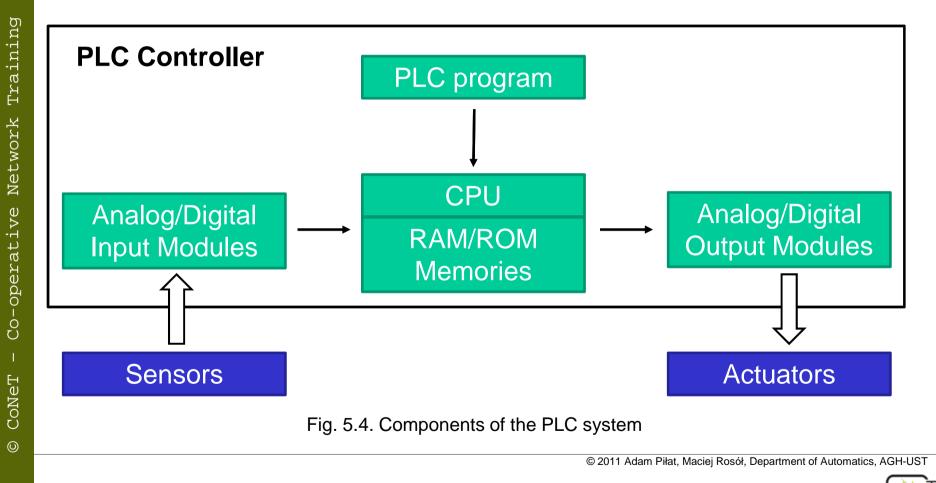
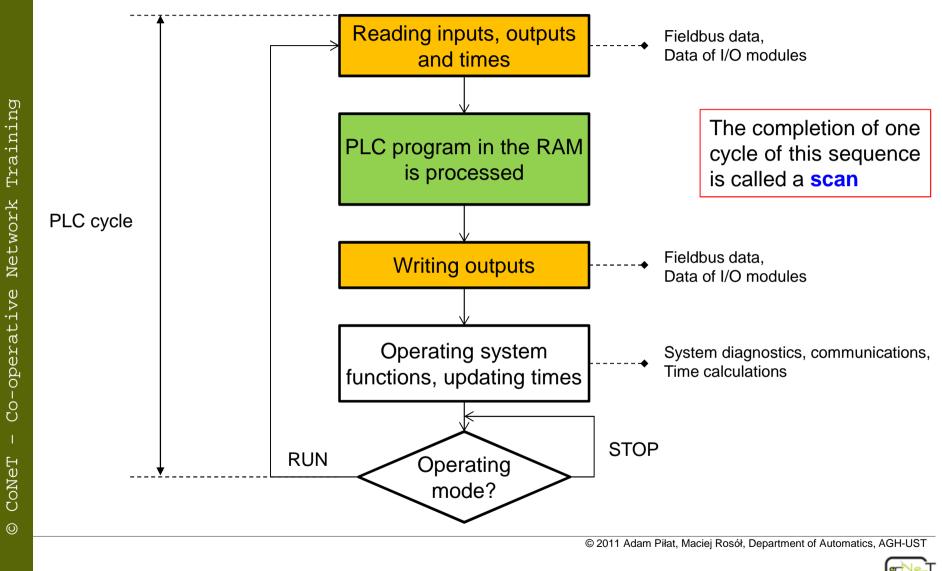



Fig. 5.2. Aero-Lift - laboratory test-rig

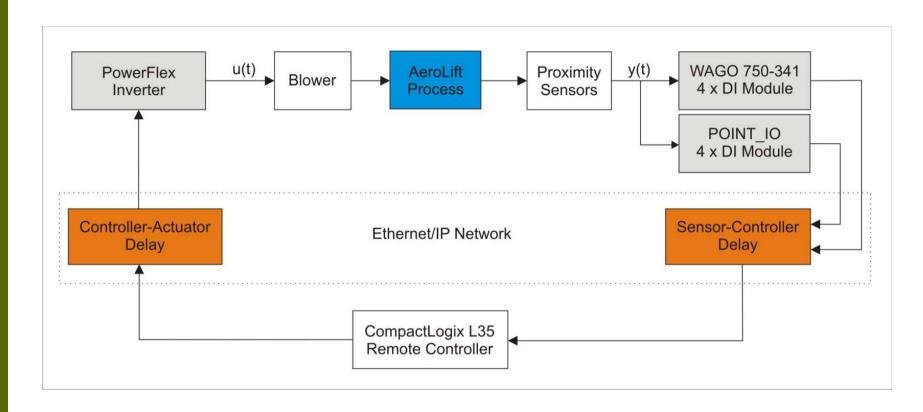
© 2011 Adam Piłat, Maciej Rosół, Department of Automatics, AGH-UST


<5 Introduction to laboratory: Description of laboratory and basic scenario> <5.2 Aerolift Overview>

>Aero-Lift Test Rig


Basis of the PLC controller

PLC controller is an industrial computer, which works under the real time operation system.



<5 Introduction to laboratory: Description of laboratory and basic scenario> <5.2 Basis of PLC>

PLC operating cycle

Real-time network structure

The presented structure can be used to demonstrate the performance of the Ethernet/IP protocol and observe propagation time delays between sensor - remote controller and remote controller - actuator.

Configuration User Interface

Aero-lift – the dynamical system sensitive for sampling time and latency in data transmission

	nection Module Info	
Requested Pa	acket Interval (RPI): 1.0 🛟 ms (1.0 - 3200.0 ms)	
and a second	guie It On Controller If Connection Fails While in Run Mode	
Task Prope	erties - ReadWAGO_Input 📃 🗖 🔀	
ieneral Confi	iguration Program / Phase Schedule Monitor	
ieneral Confi	iguration Program / Phase Schedule Monitor	
ieneral Confi Type:	iguration Program / Phase Schedule Monitor	
Туре:	Periodic	WIR
Type: Period:	Periodic 1.000 ms	WIRI
Type: Period: Priority: Watchdog:	Periodic 1.000 ms 5 (Lower Number Yields Higher Priority)	WIRI

© 2011 Adam Piłat, Maciej Rosół, Department of Automatics, AGH-UST

<5 Introduction to laboratory: Description of laboratory and basic scenario> <5.2 Aerolift Overview>

Real-time network structure

What are the parameters deciding about a network control system quality and performance?

- 1. Scan time of a PLC.
- 2. Period time of an implemented Periodic Task.
- 3. Requested Packet Interval (RPI) time.
- 4. Latency in a data transmission.

Possible problems to be solved on the laboratory setup:

- 1. Analyzing an influence of the sampling frequency and/or the RPI on the AeroLift stability and controllability.
- 2. Determination of a propagation time delays between sensor-remote controller and actuator in the Ethernet/IP network based on packet analysis.
- 3. Analyzing an influence of the latency time, observable as a jitter in the data delivery, on performance and quality of the control network system (to diagnose these effect the WireShark application can be used).

Training

Network

Co-operative

CoNeT

0

uide, PUBLICATION
JUIUE, FUDLICATION
Data. Programming
007.
1 Modular ETHERNET
Germany, 2007.
he WAGO 750-341 as
ge Module, Application Note,